5,409 research outputs found

    Determining the Optimal Location for Collocating a Louisiana Sugar Mill and a New Cellulosic Ethanol Plant

    Get PDF
    This paper examines the possibility of collocating a cellulosic ethanol processing plant with certain Louisiana sugar mills, chosen based on their strategic locations and cane grinding capacity. The prospective plants are compared based on transportation costs and overall economic performance.cellulosic ethanol, advanced biofuels, sugarcane, energy cane, bioenergy, Agribusiness, Production Economics, Resource /Energy Economics and Policy, q16, q42,

    NRGY 243.01M: Fundamentals of Photovoltaic Design and Installation

    Get PDF

    NRGY 243.01M: Fundamentals of Photovoltaic Design and Installation

    Get PDF

    Energy Cane Usage for Cellulosic Ethanol: Estimation of Feedstock Costs

    Get PDF
    Cellulosic Ethanol, Energy Cane, Sugarcane, Farm Management, Production Economics,

    MOLECULAR AND CHEMICAL DISSECTION OF CELLULOSE BIOSYNTHESIS IN PLANTS

    Get PDF
    Plant cell walls are complex structures that must not only constrain cellular turgor pressure but also allow for structural modification during the dynamic processes of cell division and anisotropic expansion. Cell walls are composed of highly glycosylated proteins and polysaccharides, including pectin, hemicellulose and cellulose. The primary cell wall polysaccharide is cellulose, a polymer composed of high molecular weight !- 1,4-glucan chains. Although cellulose is the most abundant biopolymer on Earth, there is still a lot to learn about its biosynthesis and regulation. This research began by applying a variety of analytical techniques in an attempt to understand differences in cell wall composition and cellulose structure within the plant body, between different plant species and as a result of acclimation by the plant to different environmental conditions. Next, a number of different Arabidopsis thaliana lines possessing mutations affecting cell wall biosynthesis were analyzed for changes in cellulose structure (crystallinity) and biomass saccharification efficiency. One of these mutants, isoxaben resistance1-2 (ixr1- 2), which contains a point mutation in the C-terminal transmembrane region (TMR) of cellulose synthase 3 (CESA3), exhibited a 34% lower biomass crystallinity index and a 151% improvement in saccharification efficiency relative to that of wild-type. The culmination of this research began with a chemical screen that identified the molecule quinoxyphen as a primary cell wall cellulose biosynthesis inhibitor. By forward genetics, a semi-dominant mutant showing strong resistance to quinoxyphen named aegeus was identified in A. thaliana and the resistance locus mapped to a point mutation in the TMR of CESA1. cesa1aegeus occurs in a similar location to that of cesa3ixr1-2, illustrating both subunit specificity and commonality of resistance locus. These drug resistant CESA TMR mutants are dwarfed and have aberrant cellulose deposition. High-resolution synchrotron X-ray diffraction and 13C solid-state nuclear magnetic resonance spectroscopy analysis of cellulose produced from cesa1aegeus, cesa3ixr1-2 and the double mutant shows a reduction in cellulose microfibril width and an increase in mobility of the interior glucan chains of the cellulose microfibril relative to wild-type. These data demonstrate the importance of the TMR region of CESA1 and CESA3 for the arrangement of glucan chains into a crystalline cellulose microfibril in primary cell walls

    Breaking into the Cellulosic Ethanol Market: Capacity and Storage Strategies

    Get PDF
    This paper examines the possibilities of breaking into the cellulosic ethanol market in south Louisiana via strategic feedstock choices and the leveraging of the area’s competitive advantages. A small plant strategy is devised whereby the first-mover problem might be solved, and several scenarios are tested using Net Present Value analysis.cellulosic ethanol, sugarcane, energy cane, sweet sorghum, bagasse, ethanol, biofuel, bioethanol, Agribusiness, Agricultural Finance, Crop Production/Industries, Production Economics, Research and Development/Tech Change/Emerging Technologies, Resource /Energy Economics and Policy,

    Functional genomics of a symbiotic community : shared traits in the olive fruit fly gut microbiota

    Get PDF
    The olive fruit fly Bactrocera oleae is a major pest of olives worldwide and houses a specialized gut microbiota dominated by the obligate symbiont “Candidatus Erwinia dacicola”. Ca. E. dacicola is thought to supplement dietary nitrogen to the host, with only indirect evidence for this hypothesis so far. Here, we sought to investigate the contribution of the symbiosis to insect fitness and explore the ecology of the insect gut. For this purpose, we examined the composition of bacterial communities associated with Cretan olive fruit fly populations, and inspected several genomes and one transcriptome assembly. We identified, and reconstructed the genome of, a novel component of the gut microbiota, Tatumella sp. TA1, which is stably associated with Mediterranean olive fruit fly populations. We also reconstructed a number of pathways related to nitrogen assimilation and interactions with the host. The results show that, despite variation in taxa composition of the gut microbial community, core functions related to the symbiosis are maintained. Functional redundancy between different microbial taxa was observed for genes involved in urea hydrolysis. The latter is encoded in the obligate symbiont genome by a conserved urease operon, likely acquired by horizontal gene transfer, based on phylogenetic evidence. A potential underlying mechanism is the action of mobile elements, especially abundant in the Ca. E. dacicola genome. This finding, along with the identification, in the studied genomes, of extracellular surface structure components that may mediate interactions within the gut community, suggest that ongoing and past genetic exchanges between microbes may have shaped the symbiosis
    corecore